15 research outputs found

    Determining cellular CTCF and cohesin abundances to constrain 3D genome models.

    Get PDF
    Achieving a quantitative and predictive understanding of 3D genome architecture remains a major challenge, as it requires quantitative measurements of the key proteins involved. Here, we report the quantification of CTCF and cohesin, two causal regulators of topologically associating domains (TADs) in mammalian cells. Extending our previous imaging studies (Hansen et al., 2017), we estimate bounds on the density of putatively DNA loop-extruding cohesin complexes and CTCF binding site occupancy. Furthermore, co-immunoprecipitation studies of an endogenously tagged subunit (Rad21) suggest the presence of cohesin dimers and/or oligomers. Finally, based on our cell lines with accurately measured protein abundances, we report a method to conveniently determine the number of molecules of any Halo-tagged protein in the cell. We anticipate that our results and the established tool for measuring cellular protein abundances will advance a more quantitative understanding of 3D genome organization, and facilitate protein quantification, key to comprehend diverse biological processes

    Quantitative mapping of fluorescently tagged cellular proteins using FCS-calibrated four-dimensional imaging

    No full text
    The ability to tag a protein at its endogenous locus with a fluorescent protein (FP) enables quantitative understanding of protein dynamics at the physiological level. Genome-editing technology has now made this powerful approach routinely applicable to mammalian cells and many other model systems, thereby opening up the possibility to systematically and quantitatively map the cellular proteome in four dimensions. 3D time-lapse confocal microscopy (4D imaging) is an essential tool for investigating spatial and temporal protein dynamics; however, it lacks the required quantitative power to make the kind of absolute and comparable measurements required for systems analysis. In contrast, fluorescence correlation spectroscopy (FCS) provides quantitative proteomic and biophysical parameters such as protein concentration, hydrodynamic radius, and oligomerization but lacks the capability for high-throughput application in 4D spatial and temporal imaging. Here we present an automated experimental and computational workflow that integrates both methods and delivers quantitative 4D imaging data in high throughput. These data are processed to yield a calibration curve relating the fluorescence intensities (FIs) of image voxels to the absolute protein abundance. The calibration curve allows the conversion of the arbitrary FIs to protein amounts for all voxels of 4D imaging stacks. Using our workflow, users can acquire and analyze hundreds of FCS-calibrated image series to map their proteins of interest in four dimensions. Compared with other protocols, the current protocol does not require additional calibration standards and provides an automated acquisition pipeline for FCS and imaging data. The protocol can be completed in 1 d

    A quantitative map of human Condensins provides new insights into mitotic chromosome architecture

    Get PDF
    The two Condensin complexes in human cells are essential for mitotic chromosome structure. We used homozygous genome editing to fluorescently tag Condensin I and II subunits and mapped their absolute abundance, spacing, and dynamic localization during mitosis by fluorescence correlation spectroscopy (FSC)–calibrated live-cell imaging and superresolution microscopy. Although ∌35,000 Condensin II complexes are stably bound to chromosomes throughout mitosis, ∌195,000 Condensin I complexes dynamically bind in two steps: prometaphase and early anaphase. The two Condensins rarely colocalize at the chromatid axis, where Condensin II is centrally confined, but Condensin I reaches ∌50% of the chromatid diameter from its center. Based on our comprehensive quantitative data, we propose a three-step hierarchical loop model of mitotic chromosome compaction: Condensin II initially fixes loops of a maximum size of ∌450 kb at the chromatid axis, whose size is then reduced by Condensin I binding to ∌90 kb in prometaphase and ∌70 kb in anaphase, achieving maximum chromosome compaction upon sister chromatid segregation

    Real-time chromatin dynamics at the single gene level during transcription activation

    No full text
    Genome dynamics relate to regulation of gene expression, the most fundamental process in biology. Yet we still do not know whether the very process of transcription drives spatial organization and chromatin conformation at specific gene loci. To address this issue, we have optimized the ANCHOR/ParB DNA labeling system for real-time imaging and quantitative analysis of the dynamics of a single-copy transgene in human cells. Transcription of the transgene under the control of the endogenous Cyclin D1 promoter was induced by addition of 17beta-estradiol. Motion of the ANCHOR3-tagged DNA locus was recorded in the same cell prior to and during appearance of nascent mRNA visualized using the MS2 system. We found that transcription initiation resulted in rapid confinement of the mRNA-producing gene. The confinement was maintained even upon inhibition of pol2 elongation. It did not occur when recruitment of pol2 or transcription initiation was blocked by anti-estrogens or Triptolide. These results suggest that preinitiation complex formation and concomitant reorganization of the chromatin domain constrains freedom of movement of an induced gene's promoter within minutes. Confined diffusion reflects assembly of functional protein hubs and DNA processing during the rate-limiting steps of transcription

    Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins

    No full text
    Mammalian genomes are spatially organized into compartments, topologically associating domains (TADs), and loops to facilitate gene regulation and other chromosomal functions. How compartments, TADs, and loops are generated is unknown. It has been proposed that cohesin forms TADs and loops by extruding chromatin loops until it encounters CTCF, but direct evidence for this hypothesis is missing. Here, we show that cohesin suppresses compartments but is required for TADs and loops, that CTCF defines their boundaries, and that the cohesin unloading factor WAPL and its PDS5 binding partners control the length of loops. In the absence of WAPL and PDS5 proteins, cohesin forms extended loops, presumably by passing CTCF sites, accumulates in axial chromosomal positions (vermicelli), and condenses chromosomes. Unexpectedly, PDS5 proteins are also required for boundary function. These results show that cohesin has an essential genome-wide function in mediating long-range chromatin interactions and support the hypothesis that cohesin creates these by loop extrusion, until it is delayed by CTCF in a manner dependent on PDS5 proteins, or until it is released from DNA by WAPL

    A quantitative map of human Condensins provides new insights into mitotic chromosome architecture

    Get PDF
    The two Condensin complexes in human cells are essential for mitotic chromosome structure. We used homozygous genome editing to fluorescently tag Condensin I and II subunits and mapped their absolute abundance, spacing, and dynamic localization during mitosis by fluorescence correlation spectroscopy (FSC)–calibrated live-cell imaging and superresolution microscopy. Although ∌35,000 Condensin II complexes are stably bound to chromosomes throughout mitosis, ∌195,000 Condensin I complexes dynamically bind in two steps: prometaphase and early anaphase. The two Condensins rarely colocalize at the chromatid axis, where Condensin II is centrally confined, but Condensin I reaches ∌50% of the chromatid diameter from its center. Based on our comprehensive quantitative data, we propose a three-step hierarchical loop model of mitotic chromosome compaction: Condensin II initially fixes loops of a maximum size of ∌450 kb at the chromatid axis, whose size is then reduced by Condensin I binding to ∌90 kb in prometaphase and ∌70 kb in anaphase, achieving maximum chromosome compaction upon sister chromatid segregation

    Real-Time Imaging of a Single Gene Reveals Transcription-Initiated Local Confinement

    No full text
    International audienceGenome dynamics are intimately linked to the regulation of gene expression, the most fundamental mechanism in biology, yet we still do not know whether the very process of transcription drives spatial organization at specific gene loci. Here, we have optimized the ANCHOR/ParB DNA-labeling system for real-time imaging of a single-copy, estrogen-inducible trans-gene in human cells. Motion of an ANCHOR3-tagged DNA locus was recorded in the same cell before and during the appearance of nascent MS2-labeled mRNA. We found that transcription initiation by RNA polymerase 2 resulted in confinement of the mRNA-producing gene domain within minutes. Transcription-induced confinement occurred in each single cell independently of initial, highly heterogeneous mobility. Constrained mobility was maintained even when inhibiting polymerase elongation. Chro-matin motion at constant step size within a largely confined area hence leads to increased collisions that are compatible with the formation of gene-specific chromatin domains, and reflect the assembly of functional protein hubs and DNA processing during the rate-limiting steps of transcription

    Experimental and computational framework for a dynamic protein atlas of human cell division.

    No full text
    Essential biological functions, such as mitosis, require tight coordination of hundreds of proteins in space and time. Localization, the timing of interactions and changes in cellular structure are all crucial to ensure the correct assembly, function and regulation of protein complexes(1-4). Imaging of live cells can reveal protein distributions and dynamics but experimental and theoretical challenges have prevented the collection of quantitative data, which are necessary for the formulation of a model of mitosis that comprehensively integrates information and enables the analysis of the dynamic interactions between the molecular parts of the mitotic machinery within changing cellular boundaries. Here we generate a canonical model of the morphological changes during the mitotic progression of human cells on the basis of four-dimensional image data. We use this model to integrate dynamic three-dimensional concentration data of many fluorescently knocked-in mitotic proteins, imaged by fluorescence correlation spectroscopy-calibrated microscopy(5). The approach taken here to generate a dynamic protein atlas of human cell division is generic; it can be applied to systematically map and mine dynamic protein localization networks that drive cell division in different cell types, and can be conceptually transferred to other cellular functions
    corecore